Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Human activity and climate change are altering natural rates and intensities of wildfire, but the scale and extent of burning prior to the modern era are poorly understood. Prehistoric fire activity can be reconstructed using a variety of records including charcoal deposited along with sediment at the bottom of lakes and burn scars on tree rings, but these are not available in all environmental settings. We are developing a new paleofire proxy: polycyclic aromatic hydrocarbons (PAHs) in stalagmites. PAHs are produced by the burning of vegetation, with molecular weights reflecting combustion conditions. After being formed in a fire, PAHs are transported downward by infiltrating rainwater and in cave areas can become incorporated into stalagmites as they crystallize from drip water in underlying caves (Perrette et al., 2008; Denniston et al., 2018). Thus, the potential exists for PAHs in stalagmites to preserve evidence of the presence and intensity of fire through time. Because this is a new method, several important tests need to be performed to evaluate its veracity. I assessed how well PAH abundances, ratios, and trends replicate between two coeval stalagmites from cave KNI-51 located in the tropics of Western Australia. Stalagmite KNI-51-F was previously analyzed and I analyzed the overlapping portion of stalagmite KNl-51-G: overlap in age from CE 1310-1630. This work was done at Ca' Foscari University, Venice, in the fall of 2022, under the direction of Dr. Elena Argiriadis. The results show similarities between the area of overlap in the G and F stalagmites. The commonalities of the concentrations of PAH in the stalagmites indicate confidence in the developed method in assessing pyrogenic compounds in coeval stalagmites.more » « less
-
Polycyclic aromatic hydrocarbons (PAHs) are produced by the burning of biomass, with molecular weights reflecting combustion conditions. After being formed, PAHs are transported downward through soil and bedrock by infiltrating rainwater (Perrette et al., 2013), and in karst areas can become incorporated into stalagmites as they crystallize from dripwater in underlying caves (Perrette et al., 2008; Denniston et al., 2018). Thus, when stalagmite growth is high, infiltration times short, and fluid mixing minimized, there exists the potential for PAHs in stalagmites to preserve evidence of the presence and intensity of fire through time. We have previously reported a high-resolution analysis of PAH distributions in two non-overlapping aragonite stalagmites from cave KNI-51, tropical Western Australia, that together span the majority of the last 900 years. The geologic conditions of this site make it well suited for the transmission of discrete pulses of fire-derived compounds from the land surface to the stalagmite. Soils are thin to absent above the stalagmite chamber and the cave is shallow. As a result, homogenization of infiltrated water (and thus PAHs) is expected to be small on interannual time scales. In addition, intense summer monsoon rains flush fire debris from the hillsides over the cave. These characteristics, coupled with the fast growth rates (1-2 mm/yr) and precise radiometric dates (±1-30 years 2 s.d. over the last millennium) of KNI-51 stalagmites suggest that they hold the potential for extremely high resolution paleofire reconstruction. Here we provide the first test of replication of PAH abundances, ratios, and trends in coeval stalagmites. Samples were analyzed at Ca’ Foscari University using methods of Argiriadis et al. (2019) and the results validated by comparing them with fire activity detected through satellite images. Stalagmites KNI-51-F and -G overlap in age from CE 1310-1630, allowing an examination of the consistency of the PAH signal along different infiltration pathways. References Argiriadis, E. et al. (2019) European Geosciences Union Annual Meeting, Vienna, Australia. Denniston, R.F. et al. (2018) American Geophysical Union Annual Meeting, Washington, D.C. Perrette, Y. et al. (2008) Chemical Geology, 251, 67-76. Perrette, Y. et al. (2013) Organic Geochemistry, 65, 37-45.more » « less
An official website of the United States government

Full Text Available